On trans-Sasakian $3$-manifolds as $\eta$-Einstein solitons

نویسندگان

چکیده

The present paper is to deliberate the class of $3$-dimensional trans-Sasakian manifolds which admits $\eta$-Einstein solitons. We have studied solitons on where Ricci tensors are Codazzi type and cyclic parallel. also discussed some curvature conditions admitting vector field torse-forming. shown an example manifold with respect soliton verify our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Eta-einstein Sasakian Geometry

A compact quasi-regular Sasakian manifold M is foliated by onedimensional leaves and the transverse space of this characteristic foliation is necessarily a compact Kähler orbifold Z. In the case when the transverse space Z is also Einstein the corresponding Sasakian manifold M is said to be Sasakian η-Einstein. In this article we study η-Einstein geometry as a class of distinguished Riemannian ...

متن کامل

Trans-sasakian Manifolds

The object of the present paper is to study the extended generalized φ-recurrent trans-Sasakian manifold and its various geometric properties.

متن کامل

The Einstein-dirac Equation on Sasakian 3-manifolds

We prove that a Sasakian 3-manifold admitting a non-trivial solution to the Einstein-Dirac equation has necessarily constant scalar curvature. In the case when this scalar curvature is non-zero, their classi cation follows then from a result by Th. Friedrich and E.C. Kim. We also prove that a scalarat Sasakian 3-manifold admits no local Einstein spinors.

متن کامل

On a Type of Trans-sasakian Manifolds

The object of the present paper is to study 3-dimensional trans-Sasakian manifolds admitting a W2-curvature tensor. Trans-Sasakian manifolds satisfying the curvature condition S(X, ξ).R = 0 is also considered.

متن کامل

Eta-Ricci solitons on para-Kenmotsu manifolds

In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2021

ISSN: ['2075-9827', '2313-0210']

DOI: https://doi.org/10.15330/cmp.13.2.460-474